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In this article we are interested in the problem of numerical simulations for a shallow fluid
flow in a rotating system. This problem is closely related to climate or meteorological sim-
ulations. Our purpose is to introduce a new finite volume technique which allows us to
guarantee conservation of linear momentum in an inertial frame of reference. Furthermore,
we show that this method introduces a new discrete Coriolis term which is based on the
interface mass fluxes instead of on straightforward cell-centered evaluation of the source
term. Some numerical tests exhibit that this approach significantly reduces the numerical
diffusion and is particularly interesting when considering nonisotropic meshes or long
time simulations.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

In 1835 Coriolis [6] showed that a rotating frame can be considered as a reference frame if two forces, the Coriolis and
centrifugal forces, are added. The centrifugal force affects all the particles of fluid and its direction is purely radial in the
rotating system. The Coriolis force concerns only particles that undergo relative motion in the relative frame and it is orthog-
onal to their velocities, and to the axis of rotation. It follows that in a rotating frame the shallow water equations are clas-
sically written in the form of
ðothÞr þrr � ðhuÞ ¼ 0;

ðotðhuÞÞr þrr � ðhu� uÞ þ $r
gh2

2

� �
þ 2X� ðhuÞ þ hX� ðX� xrÞ ¼ 0;

(
ð1Þ
where hðt;xrÞ is the fluid height, uðt;xrÞ is the velocity, X is the vector of rotation, g is the acceleration due to the gravity, and
the sub- or superscript r is related to the fact that we consider all the coordinates and derivatives in the relative frame. The
symbol � and � denote the vector and tensorial products, respectively. This result can easily be obtained by considering the
equations in the inertial frame
. All rights reserved.
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ðot ĥÞi þri � ðĥûÞ ¼ 0;

ðotðĥûÞÞi þri � ðĥû� ûÞ þ $i
gĥ2

2

� �
¼ 0

8<
: ð2Þ
and applying an appropriate coordinate transformation to the rotating frame. In system (2), ĥðt;xiÞ is the fluid height, ûðt; xiÞ
is the velocity, and the sub- or superscript i is related to the fact that we consider all the coordinates and derivatives in the
inertial frame.

Now we are interested in the numerical discretization of systems (1) or (2). We are motivated by many important appli-
cations in meteorology and climate research [14,18,20]. System (1), written in the relative frame, has many advantages. It
allows us to access immediately the quantities of interest (the wind velocity on the earth, for example, and not the wind
velocity plus the velocity due to the rotation of the earth). Also the computational domain and, in many computer models,
the related mesh are fixed. But it has also important drawbacks since we loose some information related to the inertial quan-
tities. In particular let us observe that the inertial momentum has to be preserved since (2) is a homogeneous system in con-
servation form. This property remains obviously satisfied by the continuous relative system (1), but is now due to some
balancing phenomenon between flux and source terms which is not easy to extend to the discrete level even if the discret-
ization technique is conservative. This problem is well known in the context of shallow water equations with topographic
source term, see [1,3] and references therein, or Euler equations with gravity terms, see [2]. This lack of conservativity of
the classical discretizations is the main motivation for the present work. It stems from the fact that, in practical applications
in meteorology or climate research, one can hardly ever completely resolve all flow features, so that nearly converged solu-
tions are the exception rather than the rule. The integral conservation laws for mass, linear momentum, and total energy in
gasdynamics or mass and linear momentum in the shallow water context are, however, valid on arbitrary control volumes
without any convergence requirement – provided accurate approximations for the effective fluxes of the conserved quanti-
ties are available. A fully conservative scheme is therefore of interest in building computational models whose fundamental
design principles remain valid even if the solutions are strongly underresolved. In a recently published article, Thurburn [18]
presents a detailed review of the relative importance of different conservation properties and the need to preserve such
properties in numerical weather prediction and climate models. The argument for such a need is strong for long-term cli-
mate simulations, as numerical sources and sinks can degrade the accuracy of the various global budgets significantly over
a long time. Thuburn [18] also discusses how numerical models can ensure the desired conservation properties through dis-
cretization procedures. In this study we present a new discretization technique that guarantees conservation of linear iner-
tial momentum. The heart of the method is to change the order of the processes that are involved in the transition from the
continuous inertial equations to the discrete relative ones. The classical way is to perform the change of variables at the con-
tinuous level and then to discretize the relative system (1). Here we first apply a conservative discretization method to the
inertial system (2) and then we perform the change of reference frame in order to exhibit a set of equations that involves the
discrete relative fluid height and momentum. This method will have the inherent property of being conservative for the lin-
ear inertial momentum. Furthermore this new method preserves the advantages of the classical one since the effective com-
putations are performed on the discrete relative quantities and on a fixed mesh.

In global climate or meteorological simulations the problem is posed on the sphere. In this case centrifugal forces are of-
ten included in the pressure and/or gravity term. Hence it is fundamental to be able to distinguish the Coriolis and centrif-
ugal effects in our new discretization. It is done in the second part of this article. The discrete Coriolis effect is proved to be
modelled through two distinguished terms. The first one involves the cell-centered momentum and is similar to the classical
approximation. The second one involves the mass fluxes through the cell interfaces and thus can be interpreted as a discret-
ization of the momentum flux due to rotation of the cell interfaces. These two terms are equal in the continuous limit and are
the direct analogues of the well-known two terms that arise in the transformation to a rotating system on the level of the
underlying partial differential equations (1). Numerical investigation exhibit that the resulting ‘‘crosswind scheme” is insen-
sitive to anisotropy of the computational mesh, which is not the case for the classical centered discretization.

Throughout the paper we consider the shallow water equations on a rotating plane. This allows us to focus on the details
of our new approach without having to deal with other technical difficulties. We do insist, though, on the fact that our ap-
proach is quite general and is absolutely applicable to a wide range of equations, including the 3D Euler equations on the
sphere. The reason for our insisting is that the principal sequence of steps, namely

(1) discretize the conservation laws formulated in an inertial frame for a time dependent grid;
(2) transform the discrete equations into the grid-attached frame for both the space–time coordinates and the dependent

variables;
(3) regroup the resulting equations so as to identify the terms corresponding to the Coriolis- and centrifugal accelerations

makes no reference to either a specific set of conservation laws, and neither does it assume flat geometry of the flow
domain.

The outline of the paper is as follows. In Section 2 we perform the discretization of the inertial equations on a rotating
mesh, from which we can derive a conservative scheme. Then we go a step further and we identify the Coriolis and centrif-
ugal forces in the new formulation. Then we prove that our scheme is consistent with the continuous equations. Finally we
present some numerical tests that illustrate the capabilities of the method in Section 3.
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2. A conservative scheme for rotating shallow flows

In this section we describe our new method to solve the problem of a shallow moving fluid on a rotational domain. The
main goal is to ensure the conservation of the discrete inertial momentum. We first exhibit the general form of a finite vol-
ume method that ensures this property. Then we describe our method to reach such a goal. It is done in two steps. First we
apply a conservative finite volume method to the homogeneous equations written in the inertial frame. Then we apply
change of reference frame to the discrete equations and we derive a numerical scheme for the relative quantities.

2.1. General form of a conservative scheme

We consider a very general finite volume discretization of system (1)
hnþ1
i ¼ hn

i �
Dt
jCij

X
j

Fh
ij; ð3Þ

qnþ1
i ¼ qn

i �
Dt
jCij

X
j

Fq
ij � Cn

1i
� Cn

2i
; ð4Þ
where C1 and C2 denote explicit discretizations of the Coriolis and centrifugal source terms, respectively, h and q ¼ hu denote
cell-centered values of the fluid height and momentum, respectively. The other notations are classical and we refer the read-
er to subsequent sections for a precise description of all the terms.

We want to ensure the conservation of the discrete inertial momentum on the whole domain (without paying attention
to the physical loss or gain of inertial momentum due to the boundary conditions since we are interested in the numerical
conservation property of the finite volume scheme). For a first order scheme, this would imply that the discrete relative
quantities satisfy the following expression where R is the rotation matrix (7) that characterizes the rotation of the domain
X
i

qnþ1
i þ hnþ1

i X� xi

� �
¼ RðDtÞ

X
i

ðqn
i þ hn

i X� xiÞ
" #

: ð5Þ
By using (3) and (4) in (5) we can express all the quantities at time tn and obtain a relation on the whole domain between the
discrete source terms, the interface fluxes and the cell-centered values. Since the finite volume method is local we can
emphasize that the same relation must be satisfied on each cell, up to a conservative flux. We thus derive the only general
form of the discrete first order Coriolis and centrifugal source terms that can ensure the conservation of the inertial
momentum
Cn
1i
þ Cn

2i
¼ Dt

2
XDt

sin
XDt

2

� �
X� qn

i þ hn
i X� ðX� xiÞ

� �
� Dt
jCij

X
j

Fh
ijðX� xiÞ þ ~Fij

h i
; ð6Þ
where ~Fij is any conservative momentum flux. We recognize in this formal investigation two terms which can be related to
classical ones, the explicit centered discretization of the centrifugal term (second term on the right hand side) and the half of
the explicit centered Coriolis term (first term on the right hand side). But the presence of a non conservative flux term (third
term on the right hand side) shows that the classical fully centered discretization of the Coriolis source term cannot ensure
the conservation of the inertial momentum. The remaining question is to identify the unknown conservative flux ~Fij that ap-
pears in this third term.

2.2. Discretization of the equations on the rotating mesh

We first introduce some definitions related to the rotation of the domain and we exhibit the relations that exist between
the inertial and relative frames. Let X denote the rotation vector which is supposed to be orthogonal to the ðx; yÞ plane. We
use X for the angular velocity of rotation of the domain. Throughout the paper we suppose that this rotation rate is constant.
We introduce the related rotation matrix
RðtÞ ¼
cosðXtÞ sinðXtÞ
� sinðXtÞ cosðXtÞ

� 	
: ð7Þ
The relative and inertial quantities (coordinates, water height, velocity) are then related by the following expressions:
xr ¼ RðtÞxi; hðxr; tÞ ¼ ĥðxi; tÞ; uðxr; tÞ ¼ RðtÞðûðxi; tÞ �X� xiÞ: ð8Þ
Let us now introduce some definitions concerning the discretization of the domain. Let Cn
i denote a cell at time tn and Cn

ij the
edge between cells Cn

i and Cn
j . The finite volume of integration V

nþ1
2

i in the ðx; y; tÞ space is thus bounded by Cn
i , Cnþ1

i and the
lateral surfaces S

nþ1
2

ij which are obtained from the evolution of CijðtÞ during the time step ½tn; tnþ1�. Since the domain is rotating
in the inertial frame, these lateral surfaces are not included in a plane. and the control volume V

nþ1
2

i is not a cylinder. To deal
with 2D moving mesh may thus lead to complex computations and one often needs to introduce additional approximations
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(see [19] for more details). But here the movement of the mesh is known a priori to be a simple rotation and it will allows us
to perform all the computations analytically. Hence the desired exact conservation property can be preserved. In the follow-
ing we briefly present the main formulas that are an essential tool in the description of the rotating mesh. and we refer the
reader to [15] for a very clear 1D introduction about the finite volume method on moving meshes.

The lateral surfaces S
nþ1

2
ij can be described through the expression of their unit outward normal vector
n̂ijðxn
ij; tÞ ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðX� xn

ijÞ:~n
xy
ij ðt

nÞ
h i2

r ~nxy
ij ðtÞ

�ðX� xn
ijÞ:~n

xy
ij ðt

nÞ

 !
ð9Þ
where the notation xn
ij stands for a current point of Cn

ij. The vector ~nxy
ij ðtÞ denotes the unit outward normal vector (in the ðx; yÞ

plane) to CijðtÞ and thus is the space component of the outward normal vector to the lateral surface. The scalar product
ðX� xijðtÞÞ:~nxy

ij ðtÞ denotes the time component of the outward normal vector to the lateral surface and does not depend
on time. It thus can be considered at initial time tn.

When integrations on the lateral surface S
nþ1

2
ij are considered it is natural to introduce a pair of curvilinear coordinates

ðx;rÞ that describes this surface. For further computations we need to know how the arclength coordinate r can be related
to time t. Since the mesh is simply rotating the relation reduces to the following linear function
t ¼ tn þ rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ½ðX� xn

ijÞ:~n
xy
ij ðt

nÞ�2
q : ð10Þ
We present a derivation of formula (9) and (10) in the Appendix A.
We can now perform the discretization of the equations on the moving mesh. We consider the system in the inertial

frame (2). We integrate it on the control volume V
nþ1

2
i and then use the previous expressions to derive relations on the rel-

ative fluid height and momentum. Here we just present the main results of the derivation. A detailed proof for the momen-
tum equation is given in the Appendix B.

Let us begin with the mass equation. We integrate the first equation of system (2) on the control volume. Then we apply
the Green’s formula and use relations (9) and (10) to obtain
Z

V
nþ1

2
i

oĥ
ot

 !
i

þri:ðĥûÞ
" #

dv i ¼
Z

Cnþ1
i

ĥðtnþ1; xi; yiÞdxidyi �
Z

Cn
i

ĥðtn; xi; yiÞdxidyi þ
Z
P

j

Cn
ij�½t

n ;tnþ1 �
ĥûðt; xi

ijðt;xn
ijÞÞ:~n

xy
ij ðtÞdtdxn

ij

�
Z
P

j

Cn
ij�½t

n ;tnþ1 �
ĥðt;xi

ijðt; xn
ijÞÞðX� xi

ijðt;xn
ijÞÞ:~n

xy
ij ðtÞdtdxn

ij: ð11Þ
Since the rotating mesh is fixed in the relative frame, we can equate xn
ij with xr

ij and then introduce the relative fluid height
and velocity using relations (8). This leads to some balancing phenomenon between the two last terms on the right hand side
in (11) and we finally obtain
Z

Ci

hðtnþ1; x; yÞdxdy ¼
Z

Ci

hðtn; x; yÞdxdyþ
Z
P

j

Cij�½tn ;tnþ1 �
huðt;xijÞ:nijdtdxij: ð12Þ
Thus we recover the classical finite volume discretization, on a fixed mesh, of the continuous mass Eq. (1) written in the rel-
ative frame.

We now consider the momentum equation. The main difference is that the balancing phenomenon is now incomplete and
some terms involving the rotation matrix remain in the equation. They characterize the Coriolis and the centrifugal effects.
We integrate the momentum equation of system (2), written in the inertial frame, on the control volume and then use same
techniques as for the mass equation. The detailed computations are presented in the Appendix B. We finally obtain the fol-
lowing relation:
Z

Ci

ðhuÞðtnþ1; x; yÞdxdy ¼ Rðtnþ1 � tnÞ
Z

Ci

huðtn; x; yÞdxdy�
Z

Ci

hðtnþ1; x; yÞX� xdxdyþ Rðtnþ1 � tnÞ
Z

Ci

hðtn; x; yÞX� xdxdy

�
Z
P

j

Cij�½tn ;tnþ1 �
Rðtnþ1 � tÞ ðhu� uÞ þ gh2

2
I2

" #
ðt; xijÞ:nijdtdxij

�
Z
P

j

Cij�½tn ;tnþ1 �
ðhuðt;xijÞ:nijÞRðtnþ1 � tÞðX� xijÞdtdxij: ð13Þ
Note that we do not recover the classical Coriolis and centrifugal terms that come from an explicit centered discretization of
continuous momentum equation written in the relative frame (1), in particular a new flux term appears on the right hand
side. This is consistent with the general relation (6) that we previously derived. We notice that relation (13) is analytically
exact and does not imply any discretization error.
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2.3. The conservative scheme

Let us now introduce some classical mean value conservative quantities
hn
i ¼

1
jCij

Z
Ci

hðtn; x; yÞdxdy; qn
i ¼

1
jCij

Z
Ci

ðhuÞðtn; x; yÞdxdy:
We also introduce the time step Dt ¼ tnþ1 � tn and the center xi of the cell Ci. In the following the notation xij stands for the
middle of the interface Cij. For the flux terms we introduce the classical mass and momentum fluxes Fh

ij and Fq
ij which are

respectively consistent approximations of the following interface integrals computed on a fixed mesh
Z
Cij

huðt�;xijÞ:nijdxij;

Z
Cij

ðhu� uÞ þ gh2

2
I2

" #
ðt�; xijÞ:nijdxij;
where t� is defined in order to reach the accuracy we need (for example t� ¼ tn for first order accuracy, t� ¼ tnþ1=2 for second
order accuracy).

Now we propose the following scheme
hnþ1
i ¼ hn

i �
Dt
jCij

X
j

Fh
ij; ð14Þ

qnþ1
i ¼ qn

i �
Dt
jCij

~R
Dt
2

� �X
j

Fq
ij � Dt~R

Dt
2

� �
ðX� qn

i Þ ðIÞ

� hnþ1
i X� xi þ hn

i RðDtÞX� xi ðIIÞ

� Dt
jCij

~R
Dt
2

� �X
j

ðFh
ijX� xijÞ; ðIIIÞ ð15Þ
where ~R Dt
2

� �
denotes the following matrix
~R
Dt
2

� �
¼ 2

XDt
sin

XDt
2

� �
R

Dt
2

� �
ð16Þ
The conservative scheme (14) and (15) is deduced from relations (12) and (13) by using the exact integration of the rotation
matrix on the time step
Z t2

t1

RðtÞdt ¼ 2
X

sin
Xðt2 � t1Þ

2

� �
R

t2 þ t1

2

� �
ð17Þ
and the difference between rotation matrices at the beginning and at the end of the time step
½Rðt2Þ � Rðt1Þ�x ¼ �
2
X

sin
Xðt2 � t1Þ

2

� �
R

t2 þ t1

2

� �
½X� x�: ð18Þ
We also notice that Term II in (15) is a second order approximation of the term
�
Z

Ci

hðtnþ1; x; yÞX� xdxdyþ Rðtnþ1 � tnÞ
Z

Ci

hðtn; x; yÞX� xdxdy;
that appears on the right hand side of the discrete equation for the momentum (13). It follows that the order of Scheme (14)
and (15) is related to the order of the approximation of the classical fluxes Fh

ij and Fq
ij.

The main result of this subsection is that the finite volume scheme (14) and (15) is conservative for the inertial momen-
tum. This property is characterized by relation (5) and is obvious when we consider the equivalent form of relation (15)
qnþ1
i þ hnþ1

i X� xi � RðDtÞ½qn
i þ hn

i X� xi� ¼ �
Dt
jCij

~R
Dt
2

� �X
j

Fq
ij �

Dt
jCij

~R
Dt
2

� �X
j

ðFh
ijX� xijÞ ð19Þ
2.4. Coriolis flux and centrifugal effect

Now we are interested in a deeper analysis of the scheme (14) and (15) since we want to identify the Coriolis and cen-
trifugal effects in momentum Eq. (15). We first observe that this equation involves in Term I two classical discrete quantities,
i.e. the momentum flux and a half of the centered Coriolis term. Note that the presence of this second term is in accordance
with the general characterization of a conservative scheme (6). Nevertheless Terms II and III are not easy to analyse. In par-
ticular the scheme does neither involve the full classical Coriolis and centrifugal terms nor the particular form of the Coriolis
flux term that appears in (6). Hence Coriolis and centrifugal effects can not be considered separately at this stage since they
are both included, at least for parts of them, in Terms II and III that appear in momentum Eq. (15).
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We emphasized in (6) that a necessary condition for the conservation of the inertial momentum is that a part of the Cori-
olis effect has to be discretized through a non conservative flux term that involves the mass flux. Term III in (15) also involves
the mass fluxes but is in conservative form. The idea is to introduce the center of the cell xi in Term III
X

j

ðFh
ijX� xijÞ ¼

X
j

ðFh
ijX� ðxij � xiÞÞ þ

X
j

ðFh
ijX� xiÞ: ð20Þ
In the second term on the right hand side we express the mass flux Fh
ij in term of hnþ1

i � hn
i by using the scheme for the fluid

height (14). We finally obtain from relation (15)
qnþ1
i ¼ qn

i �
Dt
jCij

~R
Dt
2

� �X
j

Fq
ij

� Dt~R
Dt
2

� �
ðX� qn

i Þ �
Dt
jCij

~R
Dt
2

� �X
j

ðFh
ijX� ðxij � xiÞÞ ðVÞ

þ hn
i RðDtÞ � ~R

Dt
2

� �� �
X� xi þ hnþ1

i
~R

Dt
2

� �
� Rð0Þ

� �
X� xi: ðVIÞ ð21Þ
In the following we show that Term V in (21) characterizes the Coriolis effect whereas Term VI models the centrifugal
one.

Let us begin with the Coriolis part. First part of Term V is a classical centered discretization of the half of the Coriolis effect.
We show in the following that the second part of Term V is also related to the Coriolis effect. For the simplicity of the analysis
we restrict ourselves to a structured cartesian mesh and we assume that the mass flux can be written
Fh
ij ¼ jCijjqij:nij ð22Þ
for some interface values qij of the momentum and where nij denotes the outside normal vector to the edge Cij. Nevertheless
we claim that the construction is valid for any mesh.

Since we consider a cartesian grid we have the relation
2ðxij � xiÞ ¼ jC0ijjnij; ð23Þ
where C0ij is the cell edge that is orthogonal to Cij. It follows that the second part of Term V can be written as
Dt
jCij

~R
Dt
2

� �X
j

ðFh
ijX� ðxij � xiÞÞ ¼

Dt
jCij

~R
Dt
2

� �X
j

CijC
0
ij

2
ðqij:nijÞX� nij ¼ Dt~R

Dt
2

� �
X� 1

2

X
j

ðqij:nijÞnij

" #

¼ Dt~R
Dt
2

� �
X� qi1 þ qi3

2
:ni1

� �
ni1 þ

qi2 þ qi4

2
:ni2

� �
ni2

h i� �
;

where, in the last equality, the indices refer to the four edges of the cell Ci. At first order we recognize a discrete approxi-
mation of half of the Coriolis term where the following approximation is considered for the cell momentum (written in
the orthonormal basis ðni1;ni2Þ)
ðqnÞi1 þ ðqnÞi3
2

ðqnÞi2 þ ðqnÞi4
2

� �T

:

We conclude by noting that the form of the second part of Term V is in accordance with the general relation (6) by taking
~Fij ¼ �Fh
ijX� xij: ð24Þ
Let us now consider the centrifugal effect. We use the relations (17) and (18) on the rotation matrix to write Term VI as
�
Z Dt

0

2
XDt

sin
Xt
2

� �
hn

i R Dt � t
2

� �
þ hnþ1

i R
t
2

� �� �
dt

� 	
ðX� ðX� xÞÞ:
At first order we recognize the semi-implicit centered discretization of the centrifugal term
�Dt
hn

i þ hnþ1
i

2
ðX� ðX� xÞÞ: ð25Þ
3. Numerical results

In this section we have two main goals. The first one is to illustrate the improvement in the conservation of discrete iner-
tial momentum. The second is to focus on the new discretization of the Coriolis term and to study its numerical impact.
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3.1. Conservation of the inertial momentum

We first present some numerical results that illustrate the lack of conservativity for the inertial momentum of the clas-
sical centered method.

We consider the very simple case of a stationary vortex centered at the origin. The initial profile of the velocity is given in
polar coordinates 8
uðh; rÞ ¼
0

uhðrÞ

� �
; uhðrÞ ¼

ar if r 6 R;

að2R� rÞ if R 6 r 6 2R;

0 otherwise:

><
>: : ð26Þ
The stationary profile of the fluid height is given by
gh0ðrÞ ¼ u2
h

r
þ 2Xuh þX2r;
where h0ðrÞ denote the radial derivative of the water height. If the computational domain is centered at the origin the numer-
ical solution remains symmetric and the inertial momentum remains zero whatever the discretization of the source term.
Here we consider the box ½�0:5;1:0� � ½�0:5;1:0� and we perform the computation on four structured and regular grids with
four different grid sizes, namely 30 � 30, 60 � 60, 120 � 120 and 240 � 240 points.

The computation is performed starting from the conservative scheme (14) and (15). Eq. (21) can be used instead of (15)
since there is no difference between this two equations except a reorganization of the terms. We also perform computations
with the classical method based on the following centered explicit scheme
hnþ1
i ¼ hn

i �
Dt
jCij

X
j

Fh
ij; ð27Þ

qnþ1
i ¼ qn

i �
Dt
jCij

X
j

Fq
ij � 2DtX� qn

i � Dthn
i X� ðX� xiÞ: ð28Þ
To compute the mass and momentum fluxes we use a classical first order HLL solver [9,16]. We take X ¼ p=3 and g ¼ 7=3.
We impose h ¼ 1 at the top right corner.

In Fig. 1 we present the isolines of the initial fluid height and the initial velocity vector field.
In Fig. 2 we present the evolution in time of the total inertial momentum. As it was predicted by the theory the new dis-

cretization preserves the total inertial momentum up to the machine accuracy. For the classical discretization we observe
that the total inertial momentum oscillates with time. The oscillations remain bounded even for large integration time
(see Fig. 2, right). The oscillations also decrease with the refinement of the mesh (see Fig. 2, left). As shown in Fig. 3, the order
of convergence, in L1 norm, of the classical method is close to one. Note that although the test case is a stationary state no
superconvergence phenomenon is observed for the classical method.

3.2. Coriolis effect on isotropic meshes

In many meteolorogical or climate applications the centrifugal terms are not explicitly taken into account, they are in-
cluded in a modified pressure gradient, and it is usual to consider equations where only the Coriolis term appears. From
Fig. 1. Initial values of velocity (vector field) and fluid height (isolines) in the square ½�0:5;1:0� � ½�0:5;1:0�.
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Fig. 2. Total inertial momentum (versus time) computed with classical method on four different meshes with 20, 40, 80 and 160 points in each direction
(left) and for long time simulation (right).
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of Fig. 2 (continuous line) compared with convergence order equal to 1. (dash line).
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now on we thus neglect the centrifugal term and focus on the discretization of the Coriolis term. This is equivalent to con-
sidering shallow flow in a parabolic rotating bowl for which gravity and centrifugal effects would balance in the tangential
direction. In the following we consider first order approximations of the fluxes. Hence we will also introduce first order
approximations in time of the rotation matrix.

Starting from the conservative scheme (14) and (21) we derive a new first order scheme
hnþ1
i ¼ hn

i �
Dt
jCij

X
j

Fh
ij; ð29Þ

qnþ1
i ¼ qn

i �
Dt
jCij

X
j

Fq
ij � DtX� qn

i �
Dt
jCij

X
j

Fh
ijX� ðxi � xijÞ

h i
: ð30Þ
The cell-centered term on the right hand side of (30) is now identical to the classical discrete cell-centered Coriolis term that
appears in (28), except for a factor of two.

In the next subsections we will compare the centered discretization and the crosswind discretization of the Coriolis effect.
In particular we will study the effect of these discretizations when isotropic and nonisotropic meshes are considered and for
a non-stationary Rossby adjustment problem. Since we neglect the centrifugal terms, the centered scheme looks like
hnþ1
i ¼ hn

i �
Dt
jCij

X
j

Fh
ij; ð31Þ

qnþ1
i ¼ qn

i �
Dt
jCij

X
j

Fq
ij � 2DtX� qn

i ; ð32Þ
whereas the crosswind scheme is written
hnþ1
i ¼ hn

i �
Dt
jCij

X
j

Fh
ij; ð33Þ
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qnþ1
i ¼ qn

i �
Dt
jCij

X
j

Fq
ij � 2

Dt
jCij

X
j

½Fh
ijX� ðxi � xijÞ�: ð34Þ
In the following we will focus on these two schemes. We do not present results that are obtained with the conservative
scheme (29) and (30). We claim that they can be seen as a meanvalue between the results obtained with centered and cross-
wind schemes.

We first consider the same stationary vortex as in SubSection 3.1 but we neglect the centrifugal effect. Here we consider
the symmetric computational domain ½�0:5;0:5� � ½�0:5;0:5�.

For the initial velocity we consider the same profile (26) as before. Since we have neglected the centrifugal effect the rela-
tion between initial velocity and fluid height is slightly different. The stationary profile of the fluid height is now given by
gh0ðrÞ ¼ u2
h

r
þ 2Xuh:
In Fig. 4 are presented the initial velocity (vector field) and fluid height (isolines). We take the physical value of the gravity
(g ¼ 9:81) and we choose X ¼ 50. The results are presented at time t ¼ 1:4, i.e. slightly more than 11 rotations.

In Fig. 5 we present the solution with both centered and crosswind methods and for three different isotropic cartesian
meshes with 20, 40 and 80 points. In Fig. 6 we also present the free surface profile along the x-axis. It appears that the cross-
wind method is more accurate than the centered one whatever the size of the mesh. In Fig. 7 we present the L1 error on the
numerical solution, when compared to the stationary solution, for both centered and crosswind schemes and for the three
meshes. The error is of the same order of magnitude with both methods but almost two times smaller when considering the
crosswind discretization of the Coriolis term. We also indicate the evolution of the L1 norm of the error at final time when the
mesh is refined on Fig. 8. The convergence rate is around 0.5.

3.3. Coriolis effect on nonisotropic meshes

Here we study the impact of the distortion of the mesh on the accuracy of the results when considering the different ways
to discretize the Coriolis term.

We consider the same test case as in the previous subsection but we refine the mesh not in both directions but only in one
of them (in the other one the size of the mesh remains unchanged). Here we choose to refine the mesh in the y-direction.
More precisely we performed the computation with three different cartesian meshes for which the number of points are
20 � 20, 20 � 40, 20 � 80. We use periodic boundary conditions.

In Fig. 9 we show the contours of the fluid height. On the top row the crosswind discretization of the Coriolis term is used
whereas on the bottom row the computation is performed with the classical centered discretization. The centered method
appears to be very sensitive to the distortion of the mesh, that is, when the mesh is refined in one direction, the isolines of
the fluid height tend to become parallel to the other direction. With the crosswind discretization this problem disappears
and the circular symmetry of the solution is preserved quite well even if the mesh is distorted.

In Fig. 10 we also present the profile of the free surface along two axis of symmetry of the problem, the y-axis for the top
line and the x-axis for the bottom line. We observe that with the crosswind discertization (C lines in the figures) the profile of
the free surface is the same along the two axis and remains unchanged whatever the size of the mesh in the y-direction. With
the centered discretization of the Coriolis term (B lines in the figures) and when the mesh is refined in the y-direction the
profile of the free surface is more accurate in the y-direction but less accurate in the x-direction (where the fluid height tends
Fig. 4. Initial values of velocity (vector field) and fluid height (isolines) in the square ½�0:5; 0:5� � ½�0:5;0:5�.



Fig. 5. Isolines of the computed fluid height – Crosswind (top) and centered (bottom) schemes – 20 (left), 40 (center) and 80 (right) points in both
directions.

Fig. 6. Fluid height profiles – Cut along the horizontal axis – 20 (left), 40 (center) and 80 (right) points in both directions – Initial solution (A line), centered
(B line) and crosswind (C line) schemes.
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to become constant). Note also that the centered scheme is more diffusive than the crosswind one, whether the mesh is iso-
tropic or not.

3.4. Rossby adjustment in an open domain

In the field of climate or meteorological simulations there is considerable interest in the study of quasi-geostrophic flows
and thus the preservation of the geostrophic equilibrium. The crosswind scheme presented in this paper is not designed to
preserve complex stationary states. For example the stationary vortex discussed in the previous subsection is a particular
case of fully nonlinear 2D gradient wind equilibrium and is not exactly preserved by any of centered or crosswind schemes.
But we notice some improvements in the crosswind scheme since the qualitative aspects of the stationary solution are pre-
served whether the mesh is isotropic or not as shown by the isolines of the fluid height in Fig. 9.
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In this subsection we investigate a 1D problem which is related to the preservation of the geostrophic equilibrium. The
study of quasi-geostrophic flows is much simpler when 1D flows are considered since the linear geostrophic equilibrium is a
steady state of the fully non-linear 2D shallow water equations with 1D initial data. We thus consider in the following a par-
ticular case of the so-called Rossby adjustment, i.e. we study the relaxation of arbitrary initial configuration toward the state
of linear geostrophic equilibrium. This problem was first considered by Rossby [17]. The dynamics of the adjustment is quite
general, at least for small Rossby number flows. Starting from initial data with a zone which is not at equilibrium, the flow
first presents a transient phase where inertial-gravity waves are emitted out of the unbalanced zone, then it adjusts in some
time periods toward the geostrophic equilibrium. The geostrophic adjustment problem has received a lot of attention in
numerical studies (e.g. [4,5,12]) in recent years. Here we present a 2D version of a 1D numerical test proposed in [4]. The
test problem is the adjustment of a simple jet-shaped initial momentum imbalance at the initial time where a localized uni-
directional velocity distribution (parallel to the y-axis) is superimposed to a 2D rest state. The shape of the velocity profile in
x is given by
vðxÞ ¼ V
ð1þ tanhð4x=Lþ 2ÞÞð1� tanhð4x=L� 2ÞÞ

ð1þ tanhð2ÞÞ2
; ð35Þ
where V and L denote the maximum zonal velocity and the width of the jet. The flow is characterized by two non-dimen-
sional parameters, namely, the Rossby Ro and Burger Bu numbers defined by
Ro ¼ V
fL

Bu ¼ gH

f 2L2 : ð36Þ
The natural time scale is given by Tf ¼ 2p=f . Here we choose Ro ¼ 1, that corresponds to a fully non linear adjustment, and
Bu ¼ 0:25. Please note that simulations presented in this subsection have been carried out on a domain ½�150;150� � ½�1;1�
and what is shown in the figures is part of this domain. In Fig. 11 we first present the fluid height and the v-velocity profiles
in x-direction at time Tf , i.e. during the transient phase of the adjustment. As in [4] we can observe the propagation of iner-
tial-gravity waves to the left and to the right. For the same mesh the new crosswind scheme (B line) and the centered scheme



Fig. 9. Isolines of the computed fluid height – Crosswind (top) and centered (bottom) schemes – 20 points in the x-direction and 20 (left), 40 (center) and 80
(right) points in the y-direction.
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(A line) give very similar results. Let us observe however that the crosswind scheme is a bit less diffusive. For a finer mesh we
observe from the fluid height profile (C line) that the inertial-gravity waves contain two discontinuities. This result is similar
to those obtain in the previous works [4,12] where the authors observed that shock formation was possible even with rota-
tion effect, i.e. a non-zero Coriolis parameter.

Our main interest in this simulation is to focus on long time simulations in order to study the relaxation toward the equi-
librium. In Fig. 12 we present the fluid height and v-velocity profiles at t ¼ 22Tf . The qualitative aspects of the results are
similar to those of [4]. We observe that the crosswind results are more accurate than the centered ones. In particular the
sign of the v-velocity is expected to change in the adjustment zone as in [4]. This phenomenon can not be seen in the classical
centered simulations with the reference mesh (A line) or even if the size of the mesh is doubled (B line).

In climate simulations there is interest in the evolution of the potential vorticity
f ¼ f þ vx

h
; ð37Þ
which is simply advected by the flow. In Fig. 13 we present potential vorticity profiles at initial time and at t ¼ 22 Tf . We
observe an important advective shift to the right during the convergence toward the geostrophic equilibrium. The results
are similar to those in [4] and the difference in the profiles can be attributed to numerical diffusion in our code since we
consider only first order schemes. However we observe that the crosswind scheme reduces the numerical diffusion when
compared to the classical centered scheme.

4. Conclusion and perspectives

In this article we derive a new scheme for shallow fluid flows on rotating domains. It ensures an exact conservation of the
inertial momentum. As part of this scheme we introduce a new crosswind discretization of the Coriolis term that is shown to
be more accurate than the classical centered one, in particular when distorted meshes are considered. This new discretiza-
tion of the Coriolis term is based on the use of the mass fluxes instead of the cell-centered momentum. The computations
presented in this work are performed on cartesian meshes but we claim that the scheme can be applied on unstructured
meshes. The key idea in developing the new method consists of (i) adopting a conservative discretization of the conservation
laws in an inertial frame on a rotating mesh, and (ii) rewritting the resulting scheme in terms of the dependent and inde-
pendent variables in the rotating frame of reference in which the grid is stationary. After some analytical manipulations



Fig. 10. Fluid height profiles – Cut along the vertical (top) and the horizontal (bottom) axis – 20 points in the x-direction and 20 (left), 40 (center) and 80
(right) points in the y-direction – Initial solution (A line), centered (B line) and crosswind (C line) schemes.

Fig. 11. Fluid height (left) and v-velocity (right) profiles (in x-direction) for the Rossby adjustment test case at time t ¼ Tf – Centered (A line), crosswind (B
line) and reference (C line) solutions.
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we identify discrete terms that correspond to the centrifugal force, and to the well-known two contributions to the Coriolis
term as they appear in the classical continuum transformations of the governing equations from an inertial to a rotating
frame of reference. A natural extension of this work is to consider the conservation of the angular momentum. Reviews
by [7,18] show how the conservation of angular momentum plays a crucial role in the dynamics of the atmosphere, for
example, in long-term oscillations phenomena such as Quasi-Biennial Oscillations, El Nino Southern Oscillations and Mad-
den–Julian Oscillations. Climate models have failed to reproduce Quasi-Biennial Oscillations and the difficulty can be attrib-
uted to small errors in angular momentum budget [18]. This work is in progress.



Fig. 12. Fluid height (left) and v-velocity (right) profiles (in x-direction) for the Rossby adjustment test case at time t ¼ 22:Tf – Centered (A & B lines) and
crosswind (C & D lines) solutions on reference (A & C lines) and refined (B & D lines) meshes.
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Fig. 13. Potential vorticity profiles (in x-direction) for the Rossby adjustment test case at time t ¼ 0: – continuous line – and at time t ¼ 22Tf with centered
– dotted line – and crosswind – small dotted line- schemes.
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Clearly, in the present work we have not addressed the issue of a well-balanced discretization of the Coriolis force. Atmo-
sphere–ocean flows on sufficiently large scales are almost always in nearly geostrophic balance, which means that horizontal
pressure gradients are nearly in balance with the Coriolis effect. Important phenomena, such as the ubiquitous Rossby
waves, are a consequence of this leading order balance. In recent years, a lot of effort has been spent on designing numerical
discretizations for pdes in general [10,13], and for various geophysical flow models in particular [1–4,8,11,20], which would
maintain such leading order balances automatically per construction. Such schemes provide considerable improvements of
accuracy for solutions that are close to a balanced state. We are currently working on an extension of the present conserva-
tive scheme for Coriolis discretizations that combines the present ideas with the asymptotics-motivated approach to the bal-
ancing problem as in [1,2]. We hope to present this scheme elsewhere in the near future.
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Appendix A. Analysis of the rotating mesh

In this subsection we exhibit a parametrization of S
nþ1

2
ij and we compute the unit outgoing normal vector (9) at each point

of the surface. We also establish the relation (10) that exists between the current time t and the curvilinear coordinate r on
the surface S

nþ1
2

ij .
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We perform all the computations in the inertial frame and we ignore the superscripts i. We denote a current point of S
nþ1

2
ij

by xij ¼ ðx; y; tÞ. Since S
nþ1

2
ij comes from the rotation of CijðtÞ for t 2 ½tn; tnþ1�, we can establish the following parametrization for

S
nþ1

2
ij
yAðtÞx� xAðtÞy� yBðtÞxþ xBðtÞyþ yBðtÞxAðtÞ � xBðtÞyAðtÞ ¼ 0; ð38Þ
where AðtÞ and BðtÞ are such that CijðtÞ ¼ ½AðtÞ;BðtÞ� and
xAðtÞ ¼ rAðtnÞcosðhAðtnÞ þXðt � tnÞÞ; yAðtÞ ¼ rAðtnÞsinðhAðtnÞ þXðt � tnÞÞ
and same thing for point BðtÞ. Note that we can also describe S
nþ1

2
ij by the following way:
xij ¼ ðRðt � tnÞxn
ij; tÞ
for t 2 ½tn; tnþ1� and xn
ij 2 Cn

ij. It implies that we can characterize a point of S
nþ1

2
ij just by giving the time t and the initial coor-

dinate xn
ij at time tn.

From (38) we can compute the outward unit normal vector to S
nþ1

2
ij at any point xijðt;xn

ijÞ ¼ ðx; y; tÞ
n̂ijðt; xn
ijÞ ¼

1
cðt;xn

ijÞ

yAðtÞ � yBðtÞ
xBðtÞ � xAðtÞ

Xð�xðxBðtÞ � xAðtÞÞ þ yðyAðtÞ � yBðtÞÞÞ

0
B@

1
CA;
where cðt;xn
ijÞ is such that kn̂ijðt;xn

ijÞk ¼ 1. We can also write the normal vector on the compact form
n̂ijðt; xn
ijÞ ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ½ðX� xijðt; xn

ijÞÞ:~n
xy
ij ðtÞ�

2
q ~nxy

ij ðtÞ
�ðX� xijðt;xn

ijÞÞ:~n
xy
ij ðtÞ

 !
; ð39Þ
where we exhibit the relation between the time and space components of the normal vector by introducing
~nxy
ij ðtÞ ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðyAðtÞ � yBðtÞÞ

2 þ ðxBðtÞ � xAðtÞÞ2
q yAðtÞ � yBðtÞ

xBðtÞ � xAðtÞ

� �
that is the unit normal vector, in the ðx; yÞ plane, to CijðtÞ and thus does not depend on the local coordinate xn
ij. Since CijðtÞ is

the image of Cn
ij by the rotation Rðt � tnÞ another way to write this vector is
~nxy
ij ðtÞ ¼ Rðt � tnÞ~nxy

ij ðt
nÞ:
Using this formula it follows that the product that appears in the denominator in (39) does not depend on the time since we
have
ðX� xijðt; xn
ijÞÞ:~n

xy
ij ðtÞ ¼ ðX� Rðt � tnÞxn

ijÞ:Rðt � tnÞ~nxy
ij ðt

nÞ ¼ ðX� xn
ijÞ:~n

xy
ij ðt

nÞ: ð40Þ
By using this result in (39) we obtain the relation (9). But (40) implies also that the time component on the normal vector (9)
does not depend on time and thus it means that the line coming from the displacement in time of xijðt;xn

ijÞ is a straight line. It
has for consequence the simple relation (10) between the time t and a local parametrization r of S

nþ1
2

ij .

Appendix B. Discretization of the equations on the moving mesh

Here we present the detailed computation that we performed in Section 2.2 in order to derive a conservative discrete
equation for the momentum.

We start from the integrated form of the continuous momentum equation of system (2)
Z
V

nþ1
2

i

oðhuÞ
ot

� �
i
þri:ðhu� uÞ þ $i

gh2

2

 !" #
dv i ¼ 0:
We apply the Green’s formula to obtain
Z
Cnþ1

i

ĥûðtnþ1; xi; yiÞdxidyi �
Z

Cn
i

ĥûðtn; xi; yiÞdxidyi þ
Z

S
nþ1

2
ij

ðĥû� ûÞ þ gĥ2

2
I2

" #
ðt;xi

ijðt;xn
ijÞÞ:n̂

xy
ij ðt;x

n
ijÞdrdxn

ij

þ
Z

S
nþ1

2
ij

ĥûðt;xi
ijðt;xn

ijÞÞn̂t
ijðxn

ijÞdrdxn
ij ¼ 0:
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We use the definition (9) of the normal vector to the surface S
nþ1

2
ij to write
Z
Cnþ1

i

ĥûðtnþ1; xi; yiÞdxidyi �
Z

Cn
i

ĥûðtn; xi; yiÞdxidyi þ
Z

S
nþ1

2
ij

ðĥû� ûÞ þ gĥ2

2
I2

" #
ðt;xi

ijðt;xn
ijÞÞ:n̂

xy
ij ðt; x

n
ijÞdrdxn

ij

þ
Z

S
nþ1

2
ij

ĥûðt;xi
ijðt;xn

ijÞÞðX� xi
ijðt; xn

ijÞÞ:n̂
xy
ij ðt;x

n
ijÞdrdxn

ij ¼ 0:
We use the relation (10) between the time t and the local coordinate r and the relation between the normal vector n̂xy
ij ðt;xn

ijÞ
and its unitary projection on the ðx; yÞ plane ~nxy

ij ðtÞ – see (9) – to obtain
Z
Cnþ1

i

ĥûðtnþ1; xi; yiÞdxidyi �
Z

Cn
i

ĥûðtn; xi; yiÞdxidyi þ
Z
P

j

Cn
ij�½t

n ;tnþ1 �
ðĥû� ûÞ þ gĥ2

2
I2

" #
ðt;xi

ijðt;xn
ijÞÞ:~n

xy
ij ðtÞdtdxn

ij

�
Z
P

j

Cn
ij�½t

n ;tnþ1 �
ĥûðt;xi

ijðt;xn
ijÞÞ � ðX� xi

ijðt;xn
ijÞÞ

h i
:~nxy

ij ðtÞdtdxn
ij ¼ 0: ð41Þ
We identify the coordinates xn
ij and xr

ij since the mesh is fixed in the relative frame and we introduce the relative coordinates,
fluid height and velocity using relations (8) to write the third term on the left hand side as
Z
P

j

Cn
ij�½t

n ;tnþ1 �
ðĥû� ûÞ þ gĥ2

2
I2

" #
ðt;xi

ijðt; xn
ijÞÞ:~n

xy
ij ðtÞdtdxn

ij

¼
Z
P

j

Cij�½tn ;tnþ1 �
ðhR�1ðt � tnÞu� R�1ðt � tnÞuÞ þ gh2

2
I2

" #
ðt; xr

ijÞ:R
�1ðt � tnÞnijdtdxr

ij

þ
Z
P

j

Cij�½tn ;tnþ1 �
½ðhX� R�1ðt � tnÞxr

ijÞ � R�1ðt � tnÞuðt;xr
ijÞ�:R

�1ðt � tnÞnijdtdxr
ij

þ
Z
P

j

Cn
ij�½t

n ;tnþ1 �
½ĥûðt;xi

ijðt; xn
ijÞÞ � ðX� xi

ijðt;xn
ijÞÞ�:~n

xy
ij ðtÞdtdxn

ij; ð42Þ
where we have introduced nij, which is the normal vector to Cij, computed in the relative frame, and which satisfies the
relation
~nxy
ij ðtÞ ¼ R�1ðt � tnÞnij:
Equality (42) leads to some partial balancing phenomenon in (41). After performing the change of variables also in the two
first terms of (41) we obtain ignoring the superscripts r
Z

Ci

R�1ðtnþ1 � tnÞðhuÞðtnþ1; x; yÞdxdy�
Z

Ci

huðtn; x; yÞdxdyþ
Z

Ci

hðtnþ1; x; yÞX� R�1ðtnþ1 � tnÞxdxdy

�
Z

Ci

hðtn; x; yÞX� xdxdyþ
Z
P

j

Cij�½tn ;tnþ1 �
ðhu� uÞ þ gh2

2
I2

" #
ðt; xijÞ:R�1ðt � tnÞnijdtdxij

þ
Z
P

j

Cij�½tn ;tnþ1 �
½ðX� xijÞ � huðt; xijÞ�:R�1ðt � tnÞnijdtdxij ¼ 0: ð43Þ
A simple reorganization of the terms leads to the discrete momentum Eq. (13). The same computations but for the mass
equation lead to a complete balancing phenomenon and then to the classical relation (12).
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